Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1108660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153803

RESUMO

Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain. Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed. Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption. Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis.

2.
J Ginseng Res ; 41(1): 52-59, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123322

RESUMO

BACKGROUND: Korean Red Ginseng extract (KRG, Panax ginseng Meyer) and its constituents have been used for treating diabetes. However, in diet-induced obese mice, it is unclear whether KRG can enhance the glucose-lowering action of rosiglitazone (ROSI), a peroxisome proliferator-activated receptor gamma synthetic activator. METHODS: Oral glucose tolerance tests (oGTTs) were performed after 4 days of treatment with a vehicle (CON), KRG [500 mg/kg body weight (b.w.)], ROSI (3.75 mg/kg b.w, 7.5 mg/kg b.w, and 15 mg/kg b.w.), or ROSI and KRG (RK) in obese mice on a high-fat diet. Adipose tissue morphology, crown-like structures (CLSs), and inflammation were compared by hematoxylin-eosin staining or quantitative reverse transcription polymerase chain reaction. RESULTS: The area under the glucose curve (AUC) was significantly lower in the RK group (15 mg/kg b.w. and 500 mg/kg b.w. for ROSI and KRG, respectively) than in the CON group. There was no significant difference in the AUC between the CON and the other groups. Furthermore, the AUC was significantly lower in the RK group than in the ROSI group. The expression of the Ccl2 gene and the number of CLSs were significantly reduced in the RK group than in the CON group. CONCLUSION: Our results show a potential enhancement of ROSI-induced improvement of glucose regulation by the combined treatment with KRG.

3.
Cytokine ; 86: 64-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27468958

RESUMO

Recent studies indicate that chronic inflammation promotes the aggressiveness of cancers. However, the direct molecular mechanisms underlying a functional link between chronic periodontitis, the most common form of oral inflammatory diseases, and the malignancy of oral cancer remain unknown. To elucidate the role of chronic periodontitis in progression of oral cancer, we examined the effect of Porphyromonas gingivalis (P. gingivalis), a major pathogen that causes chronic periodontitis, on the invasiveness of oral squamous cell carcinoma (OSCC) cells, including SCC-25, OSC-20 and SAS cells. Exposures to P. gingivalis promoted the invasive ability of OSC-20 and SAS cells via the upregulation of matrix metalloproteinases (MMPs), specifically MMP-1 and MMP-2. However, P. gingivalis-infected SCC-25 cells did not exhibit changes in their invasive properties or the low expression levels of MMPs. In an effort to delineate the molecular players that control the invasiveness, we first assessed the level of interleukin-8 (IL-8), a well-known inflammatory cytokine, in P. gingivalis-infected OSCC cells. IL-8 secretion was substantially increased in the OSC-20 and SAS cells, but not in the SCC-25 cells, following P. gingivalis infection. When IL-8 was directly applied to SCC-25 cells, their invasive ability and MMP level were significantly increased. Furthermore, the downregulation of IL-8 in P. gingivalis-infected OSC-20 and SAS cells attenuated their invasive potentials and MMP levels. Taken together, our findings strongly suggest that P. gingivalis infection plays an important role in the promotion of the invasive potential of OSCC cells via the upregulation of IL-8 and MMPs.


Assuntos
Carcinoma de Células Escamosas/patologia , Interleucina-8/genética , Metaloproteinases da Matriz/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica , Porphyromonas gingivalis/fisiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Linhagem Celular Tumoral , Humanos , Interleucina-8/imunologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
4.
Tumour Biol ; 36(12): 9947-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26178482

RESUMO

Periodontitis is the most common chronic inflammatory condition occurring in the human oral cavity, but our knowledge on its contribution to oral cancer is rather limited. To define crosstalk between chronic periodontitis and oral cancer, we investigated whether Porphyromonas gingivalis, a major pathogen of chronic periodontitis, plays a role in oral cancer progression. To mimic chronic irritation by P. gingivalis in the oral cavity, oral squamous cell carcinoma (OSCC) cells were infected with P. gingivalis twice a week for 5 weeks. Repeated infection of oral cancer cells by P. gingivalis resulted in morphological changes of host cancer cells into an elongated shape, along with the decreased expression of epithelial cell markers, suggesting acquisition of an epithelial-to-mesenchymal transition (EMT) phenotype. The prolonged exposure to P. gingivalis also promoted migratory and invasive properties of OSCC cells and provided resistance against a chemotherapeutic agent, all of which are described as cellular characteristics undergoing EMT. Importantly, long-term infection by P. gingivalis induced an increase in the expression level of CD44 and CD133, well-known cancer stem cell markers, and promoted the tumorigenic properties of infected cancer cells compared to non-infected controls. Furthermore, increased invasiveness of P. gingivalis-infected OSCC cells was correlated with enhanced production of matrix metalloproteinase (MMP)-1 and MMP-10 that was stimulated by interleukin-8 (IL-8) release. This is the first report demonstrating that P. gingivalis can increase the aggressiveness of oral cancer cells via epithelial-mesenchymal transition-like changes and the acquisition of stemness, implicating P. gingivalis as a potential bacterial risk modifier.


Assuntos
Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Periodontite/patologia , Porphyromonas gingivalis/patogenicidade , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Metaloproteinase 1 da Matriz/biossíntese , Neoplasias Bucais/complicações , Neoplasias Bucais/microbiologia , Células-Tronco Neoplásicas/microbiologia , Periodontite/complicações , Periodontite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...